Nerves and Classifying Spaces for Bicategories
نویسندگان
چکیده
This paper explores the relationship amongst the various simplicial and pseudo-simplicial objects characteristically associated to any bicategory C. It proves the fact that the geometric realizations of all of these possible candidate ‘nerves of C’ are homotopy equivalent. Any one of these realizations could therefore be taken as the classifying space BC of the bicategory. Its other major result proves a direct extension of Thomason’s ‘Homotopy Colimit Theorem’ to bicategories: When the homotopy colimit construction is carried out on a diagram of spaces obtained by applying the classifying space functor to a diagram of bicategories, the resulting space has the homotopy type of a certain bicategory, called the ‘Grothendieck construction on the diagram’. Our results provide coherence for all reasonable extensions to bicategories of Quillen’s definition of the ‘classifying space’ of a category as the geometric realization of the category’s Grothendieck nerve, and they are applied to monoidal (tensor) categories through the elemental ‘delooping’ construction. Mathematical Subject Classification:18D05, 55U40.
منابع مشابه
Classifying Spaces for Braided Monoidal Categories and Lax Diagrams of Bicategories
This work contributes to clarifying several relationships between certain higher categorical structures and the homotopy type of their classifying spaces. Bicategories (in particular monoidal categories) have well understood simple geometric realizations, and we here deal with homotopy types represented by lax diagrams of bicategories, that is, lax functors to the tricategory of bicategories. I...
متن کاملClassifying Spaces and Homology Decompositions
Suppose that G is a finite group. We look at the problem of expressing the classifying space BG, up to mod p cohomology, as a homotopy colimit of classifying spaces of smaller groups. A number of interesting tools come into play, such as simplicial sets and spaces, nerves of categories, equivariant homotopy theory, and the transfer.
متن کاملOn the Geometry of 2-Categories and their Classifying Spaces
In this paper we prove that realizations of geometric nerves are classifying spaces for 2-categories. This result is particularized to strict monoidal categories and it is also used to obtain a generalization of Quillen’s Theorem A. Mathematics Subject Classifications (2000): 18D05, 18D10, 55U40, 55P15, 55U10.
متن کاملEquivalences in Bicategories
In this paper, we establish some connections between the concept of an equivalence of categories and that of an equivalence in a bicategory. Its main result builds upon the observation that two closely related concepts, which could both play the role of an equivalence in a bicategory, turn out not to coincide. Two counterexamples are provided for that goal, and detailed proofs are given. In par...
متن کاملA Unified Framework for Generalized Multicategories
Notions of generalized multicategory have been defined in numerous contexts throughout the literature, and include such diverse examples as symmetric multicategories, globular operads, Lawvere theories, and topological spaces. In each case, generalized multicategories are defined as the “lax algebras” or “Kleisli monoids” relative to a “monad” on a bicategory. However, the meanings of these wor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009